Epidermal growth factor receptor variant III-induced glioma invasion is mediated through myristoylated alanine-rich protein kinase C substrate overexpression.

نویسندگان

  • Johann Micallef
  • Michael Taccone
  • Joydeep Mukherjee
  • Sidney Croul
  • Jennifer Busby
  • Michael F Moran
  • Abhijit Guha
چکیده

Glioblastoma multiforme (GBM) is the most common and most malignant adult brain tumor. A characteristic of GBM is their highly invasive nature, making complete surgical resection impossible. The most common gain-of-function alteration in GBM is amplification, overexpression, and mutations of the epidermal growth factor receptor (EGFR). The constitutively activated mutant EGFR variant III (EGFRvIII), found in approximately 20% of GBM, confers proliferative and invasive advantage. The signaling cascades downstream of aberrant EGFR activation contributing to the invasive phenotype are not completely understood. Here, we show myristoylated alanine-rich protein kinase C substrate (MARCKS), previously implicated in cell adhesion and motility, contributes to EGFR-mediated invasion of human GBM cells. EGFRvIII-expressing or EGF-stimulated human GBM cells increased expression, phosphorylation, and cytosolic translocation of MARCKS in a protein kinase C-alpha-dependent manner. Down-regulation of MARCKS expression with small interfering RNA in GBM cells expressing EGFRvIII led to decreased cell adhesion, spreading, and invasion. Elucidation of mechanisms that promote EGFRvIII-mediated tumorigenesis in GBM, such as MARCKS, provides additional understanding and potential biological targets against this currently terminal human cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered Expression of Epidermal Growth Factor Receptor (EGFR) in Glioma

      EGFR is a key molecule in cancer cells. EGFR signaling was shown to promote tumor cell proliferation and survival, invasion and angiogenesis and mediate resistance to treatment, including ionizing radiation in preclinical models. We extracted proteins from astrocytoma (III and IV) oligodendroglioma(IV) tumors and normal brain tissues and then evaluated the protein purity by Bradford test ...

متن کامل

Myristoylated, alanine-rich C-kinase substrate phosphorylation regulates growth cone adhesion and pathfinding.

Repellents evoke growth cone turning by eliciting asymmetric, localized loss of actin cytoskeleton together with changes in substratum attachment. We have demonstrated that semaphorin-3A (Sema3A)-induced growth cone detachment and collapse require eicosanoid-mediated activation of protein kinase C epsilon (PKC epsilon) and that the major PKC epsilon target is the myristoylated, alanine-rich C-k...

متن کامل

Isoform-specific phosphorylation of metabotropic glutamate receptor 5 by protein kinase C (PKC) blocks Ca2+ oscillation and oscillatory translocation of Ca2+-dependent PKC.

Prolonged activation of metabotropic glutamate receptor 5a (mGluR5a) causes synchronized oscillations in intracellular calcium, inositol 1,4,5-trisphosphate production, and protein kinase C (PKC) activation. Additionally, mGluR5 stimulation elicited cyclical translocations of myristoylated alanine-rich protein kinase C substrate, which were opposite to that of gammaPKC (i.e. from plasma membran...

متن کامل

Fibroblast Migration Is Regulated by Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) Protein

Myristoylated alanine-rich C-kinase substrate (MARCKS) is a ubiquitously expressed substrate of protein kinase C (PKC) that is involved in reorganization of the actin cytoskeleton. We hypothesized that MARCKS is involved in regulation of fibroblast migration and addressed this hypothesis by utilizing a unique reagent developed in this laboratory, the MANS peptide. The MANS peptide is a myristoy...

متن کامل

Overexpression of the myristoylated alanine-rich C kinase substrate in human choroidal melanoma cells affects cell proliferation.

Reduced expression of the myristoylated alanine-rich C kinase substrate (MARCKS) has been described in various cell lines after oncogenic or chemical transformation, leading to the question of whether this protein may be involved in cell proliferation. Here we compare the expression of MARCKS in human tumor-derived choroidal melanoma cells (OCM-1) and in primary cultures of normal choroidal mel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 69 19  شماره 

صفحات  -

تاریخ انتشار 2009